Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles.
نویسندگان
چکیده
Surface tension, an important property of liquids, is easily measured for bulk samples. However, for droplets smaller than one micron in size, there are currently no reported measurements. In this study, atomic force microscopy (AFM) and force spectroscopy have been utilized to measure surface tension of individual submicron sized droplets at ambient pressure and controlled relative humidity (RH). Since the surface tension of atmospheric aerosols is a key factor in understanding aerosol climate effects, three atmospherically relevant systems (NaCl, malonic and glutaric acids) were studied. Single particle AFM measurements were successfully implemented in measuring the surface tension of deliquesced particles on the order of 200 to 500 nm in diameter. Deliquesced particles continuously uptake water at high RH, which changes the concentration and surface tension of the droplets. Therefore, surface tension as a function of RH was measured. AFM based surface tension measurements are close to predicted values based on bulk measurements and activities of these three chemical systems. Non-ideal behaviour in concentrated organic acid droplets is thought to be important and the reason for differences observed between bulk solution predictions and AFM data. Consequently, these measurements are crucial in order to improve atmospheric climate models as direct measurements hitherto have been previously inaccessible due to instrument limitations.
منابع مشابه
Humidity-dependent surface tension measurements of individual inorganic and organic submicrometre liquid particles† †Electronic supplementary information (ESI) available: SEM image of AFM nanoneedles, force plot data from bulk AFM surface tension, data used for surface tension vs. RH predictions, comparison of AIM and bulk predictions for NaCl. See DOI: 10.1039/c4sc03716b Click here for additional data file.
متن کامل
Effect of Surface Tension from MD Simulations on Size-Dependent Deliquescence of NaCl Nanoparticles
The deliquescence of sodium chloride is size dependent for particles smaller than 100 nm, with some discrepancies between measured and predicted deliquescence relative humidity as a function of size. Two sources of uncertainty in current models are the solid– liquid/solid–vapor surface tensions and the curvature dependence of surface tension. Molecular Dynamics simulations are used to calculate...
متن کاملStrong evidence of surface tension reduction in microscopic aqueous droplets
[1] The ability of airborne particles to take up water may be enhanced by surface-active components, but the importance of this effect is controversial because direct measurement of the surface tension of microscopic droplets has not been possible. Here we infer droplet surface tension from water uptake measurements of mixed organic-inorganic particles at relative humidities just below saturati...
متن کاملJoint effect of organic acids and inorganic salts on cloud droplet activation
We have investigated CCN properties of internally mixed particles composed of one organic acid (oxalic acid dihydrate, succinic acid, adipic acid, citric acid, cis-pinonic acid, or Nordic reference fulvic acid) and one inorganic salt (sodium chloride or ammonium sulphate). Surface tension and water activity of aqueous model solutions with concentrations relevant for CCN activation were measured...
متن کاملInfluence of particle-phase state on the hygroscopic behavior of mixed organic–inorganic aerosols
Recent work has demonstrated that organic and mixed organic–inorganic particles can exhibit multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). To explore the extent to which water uptake varies with particlephase behavior, hygroscopic growth factors (HGFs) of nine laboratory-generated, organic and organic–inorganic aerosol sys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 5 شماره
صفحات -
تاریخ انتشار 2015